61 research outputs found

    Atom--Molecule Coherence in a Bose-Einstein Condensate

    Full text link
    Coherent coupling between atoms and molecules in a Bose-Einstein condensate (BEC) has been observed. Oscillations between atomic and molecular states were excited by sudden changes in the magnetic field near a Feshbach resonance and persisted for many periods of the oscillation. The oscillation frequency was measured over a large range of magnetic fields and is in excellent quantitative agreement with the energy difference between the colliding atom threshold energy and the energy of the bound molecular state. This agreement indicates that we have created a quantum superposition of atoms and diatomic molecules, which are chemically different species.Comment: 7 pages, 6 figure

    Elastic and inelastic collisions of 6Li in magnetic and optical traps

    Full text link
    We use a full coupled channels method to calculate collisional properties of magnetically or optically trapped ultracold 6Li. The magnetic field dependence of the s-wave scattering lengths of several mixtures of hyperfine states are determined, as are the decay rates due to exchange collisions. In one case, we find Feshbach resonances at B=0.08 T and B=1.98 T. We show that the exact coupled channels calculation is well approximated over the entire range of magnetic fields by a simple analytical calculation.Comment: 4 pages revtex including 4 figures, submitted to PR

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    Cooper Pairing in Ultracold K-40 Using Feshbach Resonances

    Full text link
    We point out that the fermionic isotope K-40 is a likely candidate for the formation of Cooper pairs in an ultracold atomic gas. Specifically, in an optical trap that simultaneously traps the spin states |9/2,-9/2> and |9/2,-7/2>, there exists a broad magnetic field Feshbach resonance at B = 196 gauss that can provide the required strong attractive interaction between atoms. An additional resonance, at B = 191 gauss, could generate p-wave pairing between identical |9/2,-7/2> atoms. A Cooper-paired degenerate Fermi gas could thus be constructed with existing ultracold atom technology.Comment: 4 pages, 2 figs, submitted to Phys. Rev.

    Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps

    Full text link
    We describe a model for s-wave collisions between ground state atoms in optical lattices, considering especially the limits of quasi-one and two dimensional axisymmetric harmonic confinement. When the atomic interactions are modelled by an s-wave Fermi-pseudopotential, the relative motion energy eigenvalues can easily be obtained. The results show that except for a bound state, the trap eigenvalues are consistent with one- and two- dimensional scattering with renormalized scattering amplitudes. For absolute scattering lengths large compared with the tightest trap width, our model predicts a novel bound state of low energy and nearly-isotropic wavefunction extending on the order of the tightest trap width.Comment: 9 pages, 8 figures; submitted to Phys. Rev.

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate

    Full text link
    Photoassociation and the Feshbach resonance are, in principle, feasible means for creating a molecular Bose-Einstein condensate from an already-quantum-degenerate gas of atoms; however, mean-field shifts and irreversible decay place practical constraints on the efficient delivery of stable molecules using either mechanism alone. We therefore propose Feshbach-stimulated Raman photoproduction, i.e., a combination of magnetic and optical methods, as a viable means to collectively convert degenerate atoms into a stable molecular condensate with near-unit efficiency.Comment: 5 pages, 3 figures, 1 table; v3 includes few-level diagram of scheme, and added discussion; transferred to PR

    Atom loss and the formation of a molecular Bose-Einstein condensate by Feshbach resonance

    Full text link
    In experiments conducted recently at MIT on Na Bose-Einstein condensates [S. Inouye et al, Nature 392, 151 (1998); J. Stenger et al, Phys. Rev. Lett. 82, 2422 (1999)], large loss rates were observed when a time-varying magnetic field was used to tune a molecular Feshbach resonance state near the state of a pair of atoms in the condensate. A collisional deactivation mechanism affecting a temporarily formed molecular condensate [see V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne and C. J. Williams, Phys. Rev. A 60, R765 (1999)], studied here in more detail, accounts for the results of the slow-sweep experiments. A best fit to the MIT data yields a rate coefficient for deactivating atom-molecule collisions of 1.6e-10 cm**3/s. In the case of the fast sweep experiment, a study is carried out of the combined effect of two competing mechanisms, the three-atom (atom-molecule) or four-atom (molecule-molecule) collisional deactivation vs. a process of two-atom trap-state excitation by curve crossing [F. H. Mies, P. S. Julienne, and E. Tiesinga, Phys. Rev. A 61, 022721 (2000)]. It is shown that both mechanisms contribute to the loss comparably and nonadditively.Comment: LaTeX, 14 pages, 12 PostScript figures, uses REVTeX and psfig, submitted to Physical Review

    Three-body recombination in Bose gases with large scattering length

    Full text link
    An effective field theory for the three-body system with large scattering length is applied to three-body recombination to a weakly-bound s-wave state in a Bose gas. Our model independent analysis demonstrates that the three-body recombination constant alpha is not universal, but can take any value between zero and 67.9 \hbar a^4/m, where a is the scattering length. Other low-energy three-body observables can be predicted in terms of a and alpha. Near a Feshbach resonance, alpha should oscillate between those limits as the magnetic field B approaches the point where a -> infinity. In any interval of B over which a increases by a factor of 22.7, alpha should have a zero.Comment: 8 pages, RevTex, 3 postscript figures, uses epsf.sty, rotate.sty, references added, discussion improve
    • …
    corecore